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TOPIC XVI: SEQUENCES

PAUL L. BAILEY

Abstract. We outline the development of sequences in C, starting with open

and closed sets, and ending with the statement of the Bolzano-Weierstrauss

Theorem for complex numbers. Some propositions are formulated as problems.

1. Topology of C

1.1. Open Sets.

Definition 1. Let u ∈ C. The open ball around u of radius r is

Br(u) = {z ∈ C | |z − u| < r}.
Let U ⊂ C. We say that U is open if for every u ∈ U there exists r > 0 such

that Br(u) ⊂ U .

Problem 1. Let U ⊂ C. Show that U is open if and only if U is the union of a
collection of open balls.

Problem 2. Let U, V ⊂ R be open sets. Show that U ∩ V is an open set.

Definition 2. Let X be a set. A collection of subsets of X is a set C whose members
are subsets of X. We will use the following notation.

• ∪C = {x ∈ X | x ∈ C for some C ∈ C}
• ∩C = {x ∈ X | x ∈ C for all C ∈ C}

Problem 3. Let T denote the collection of all open subsets of C.

(a) Show that ∅ ∈ T and C ∈ T.
(b) Show that if C ⊂ T, then ∪C ∈ T.
(c) Show that if C ⊂ T and C is finite, then ∩C ∈ T.

The collection T is known as the topology of C.

Definition 3. Let z ∈ C. A neighborhood of z is a subset of C which contains an
open set which contains z.

Problem 4. Let z ∈ C and let A,B ⊂ C be neighborhoods of z. Show that A∩B
is a neighborhood of z.
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1.2. Closed Sets.

Definition 4. Let F ⊂ C.
We say that F is closed if its complement Cr F is open.

Problem 5. Let F denote the collection of all closed subsets of C.

(a) Show that ∅ ∈ F and C ∈ F.
(b) Show that if C ⊂ F, then ∩C ∈ F.
(c) Show that if C ⊂ F and C is finite, then ∪C ∈ F.

Definition 5. Let A ⊂ C.
We say that A is bounded if there exists M ∈ R such that A ⊂ BM (0).
We say that A is compact if it is closed and bounded.

The word compact has a more general definition in a more general settings, but
in the larger sense, a subset of C is compact if and only if it is closed and bounded.
Hence, for our purposes, we simply take it as a definition.

1.3. Classification of Points.

Definition 6. Let A ⊂ C.
An interior point of A is a point z ∈ A such that A contains a neighborhood of

z. The interior of A is the set of interior points of A and is denoted A◦.

Proposition 1. Let A ⊂ C. Then:

(a) A is open if and only if A = A◦;
(b) A is open if and only if every point in A is an interior point;
(c) The interior of A is the union of all open sets which are contained in A.

Definition 7. Let A ⊂ C. A closure point of A is a point z ∈ C such that every
neighborhood of z intersects A. The closure of A ⊂ X is the set of closure points
of A and is denoted A.

Proposition 2. Let A ⊂ C. Then:

(a) A is closed if and only if A = A;
(b) A is closed if and only if every point in A is an closure point;
(c) Then A is the intersection of the closed subsets of C which contain A.

Definition 8. Let A ⊂ C. A boundary point of A is a point z ∈ C such that every
neighborhood of z intersects A and Ac. The boundary of A is the set of boundary
points of A and is denoted ∂A.

Proposition 3. Let A ⊂ C. Then

(a) ∂A = ArA◦;
(b) ∂A = A ∩Ac;
(c) ∂A = ∂Ac;
(d) A = A ∩ ∂A;
(e) A◦ = Ar ∂A;
(f) ∂(∂A) ⊂ ∂A;
(g) A ∩B ∩ ∂(A ∩B) = A ∩B ∩ (∂A ∪ ∂B).

Definition 9. Let A ⊂ C. An accumulation point of A is a point z ∈ C such that
every deleted neighborhood of z intersects A. The derived set of A is the set of
accumulation points of A and is denoted A′.
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2. Sequences

Definition 10. Let X be a set. A sequence in X is a function a : N→ X.

We may write an to mean a(n). Next we specify notation to indicate the entire
sequence as opposed to a specific member of the range.

We often think of a sequence as an infinitely long tuple of elements from X, so it
looks like (a1, a2, a3, . . . ). This is written more succinctly as (an)∞n=1, or (an)n∈N,
or simply (an).

In the case X ⊂ C, we call this a sequence of complex number numbers. We are
also interested in sequences of real numbers, which become an important special
case.

Example 1. We give some famous examples of sequences of real numbers.

• The natural number: 1, 2, 3, 4, . . . , n, . . . .

• Even numbers: 2, 4, 6, 8, 10, 12, . . . .

• Powers of two: 2, 4, 8, 16, 32, 64, . . . .

• The prime numbers: 2, 3, 5, 7, 11, 13, . . . .

• The square numbers: 1, 4, 9, 16, 25, . . . , n2, . . . .

• The triangular numbers: 1, 3, 6, 10, 15, . . . ,
n(n+ 1)

2
, . . . .

• An alternating sequence: 1,−1, 1,−1, . . . , (−1)n+1, . . . .

• The harmonic sequence: 1,
1

2
,

1

3
, . . . ,

1

n
, . . . .

• The Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . . .

• The digits of pi: 3, 1, 4, 1, 5, 9, . . . .

The Recursion Theorem tells us that inductively defined sequences exist. That
is, if we have a function f : X → X and we pick any point in X, and we follows
where f sends it as f is repeatedly applied, we can capture the entire journey of
the point with a single function.

Theorem 1. (Recursion Theorem)
Let X be a set, f : X → X, and x0 ∈ X. Then there exists a unique function
x : N→ X such that x(0) = x0 and x(n+ 1) = f(x(n)) for all n ∈ N.

Example 2. Let X = R and let f(x) = 2x− 1. Set x0 = 1. Then the recursively
defined sequence given by xn+1 = f(xn) produces the sequence 1, 3, 5, 7, . . . .

Example 3. It is possible that xn+1 may depend on any previous terms. The
Fibonacci sequence is defined in this way as follows.

Let F1 = 1, F2 = 1, and Fn+2 = Fn + Fn+1. This produces the sequence
1, 1, 2, 3, 5, 8, 13, 21, . . . .

Example 4. Let X = C∞ be the Riemann sphere, and let T : C∞ → C∞ given by

T (z) =
az + b

cz + d
be a Möbius transformation. Let z0 ∈ C∞ and set zn+1 = T (zn).

Then (zn) is a recursively defined sequence.
We visualize that the (zn) is a sequence of points on the Riemann sphere. We

ask if this sequence of points gets approaches a specific point, or if it just kind of
purposelessly wanders around the sphere forever. We need the concept of limits to
make this question precise.
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3. Limits of Sequences

Definition 11. Let (an) be a sequence of complex numbers and let p ∈ C. We say
that the sequence converges to p if

∀ε > 0 ∃N ∈ N 3 n ≥ N ⇒ |an − p| < ε.

If (an) converges to p, we call p the limit of the sequence, and write lim an = p.

The next definition, and the following solved problem, will give us additional
means to visualize limits.

Definition 12. Let (an) be a sequence in a set X.
We say that (an) is injective if am = an ⇒ m = n.
The image of (an) is

{an} = {x ∈ X | x = an for some n ∈ N}.
The N th tail of (an) is

{an : N} = {x ∈ X | x = an for some n ≥ N}.

Problem 6. Let (an) be a sequence of complex numbers and let p ∈ C.
Show that the following conditions are equivalent:
(L1) For every ε > 0 there exists N ∈ N such that n ≥ N ⇒ |an − p| < ε.
(L2) For every neighborhood U of p there exists N ∈ N such that n ≥ N ⇒ an ∈ U .
(L3) Every neighborhood of p contains a tail of (an).
(L4) Every neighborhood of p contains an for all but finitely many n ∈ N.

Solution.
(L1 ⇒ L2) Suppose that for every ε > 0 there exists N ∈ N such that n ≥ N ⇒

|an − p| < ε. Let U be a neighborhood of p. Then there exists ε > 0 such that
Bε(p) ⊂ U . Let N be so large that |an − p| < ε whenever n ≥ N . Then for n ≥ N ,
we have an ∈ Bε(p) ⊂ U .

(L2⇒ L3) Suppose that for every neighborhood U of p there exists N ∈ N such
that n ≥ N ⇒ an ∈ U . Let U be a neighborhood of p and let N be so large that
n ≥ N ⇒ an ∈ U . Then {an | n ≥ N} ⊂ U , so U contains the N th tail of (an).

(L3 ⇒ L4) Suppose that every neighborhood U of p contains a tail of (an). Let
U be a neighborhood of p and let N ∈ N such that {an | n ≥ N} ⊂ U . If an /∈ U
for some n ∈ N, then an /∈ {an | n ≥ N}, so n < N . There are only finitely many
such n.

(L4⇒ L1) Suppose that every neighborhood of p contains an for all but finitely
many n. Let ε > 0. Then Bε(p) is a neighborhood of p, so an ∈ Bε(p) for all but
finitely many n ∈ N. The maximum of a finite set of natural numbers always exists.
Let N = 1 + max{n ∈ N | an /∈ Bε(p)}. Then for n > N , we have |an − p| < ε. �

Problem 7. Let (an) be an injective sequence and let p ∈ C. Show that (an)
converges to p if and only if every neighborhood of p contains a for all but finitely
many a ∈ {an}.

Problem 8. Find an example of a noninjective sequence (an) of real numbers, and
a real number p, such that every neighborhood of p contains all but finitely many
points in {an}, but (an) does not converge to p.
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4. Cluster Points of Sequences

Definition 13. Let (an) be a sequence of real numbers and let q ∈ C.
We say that the sequence clusters at q if

∀ε > 0 ∀N ∈ N ∃n ≥ N 3 |an − q| < ε.

If (an) clusters at q, we call q a cluster point of (an).

Problem 9. Let (an) be a sequence of real numbers and let q ∈ C.
Show that the following conditions are equivalent:
(C1) For every ε > 0 and every N ∈ N there exists n ≥ N such that |an − q| < ε.
(C2) For every neighborhood U of q and every N ∈ N there exists n ≥ N such
that an ∈ U .
(C3) Every neighborhood of q intersects every tail of (an).
(C4) Every neighborhood of q contains an for infinitely many n ∈ N.

Solution.
(C1 ⇒ C2) Suppose that for every ε > 0 and every N ∈ N there exists n ≥ N

such that |an − q| < ε. Let U be a neighborhood of q and let N ∈ N. Then there
exists ε > 0 such that Bε(p) ⊂ U ; thus there exists n ≥ N such that |an − q| < ε.
But this says that an ∈ Bε(q), so an ∈ U .

(C2 ⇒ C3) Suppose that for every neighborhood U of q and every N ∈ N
there exists n > N such that an ∈ U . Let U be a neighborhood of q and let
{an | n ≥ N} be an arbitrary tail of (an). Then for some n ≥ N , we have an ∈ U .
But an ∈ {an | n ≥ N}, so an ∈ {an | n ≥ N} ∩ U , and {an | n ≥ N} intersects U .

(C3 ⇒ C4) Suppose that every neighborhood of q intersects every tail of (an).
Let U be a neighborhood of q. Suppose by way of contradiction that U contains
an for only finitely many n ∈ N. Let m be the largest natural number such that
am ∈ U . Then {an : m + 1} is a tail of (an) which does not intersect U ; this is a
contradiction.

(C4 ⇒ C1) Suppose that every neighborhood of q contains an for infinitely
many n ∈ N. Let ε > 0 and N ∈ N. Then U = Bε(q) is a neighborhood of q, and U
contains an for infinitely many n ∈ N. One such n must be larger than N ; if n ∈ N
such that an ∈ U , then |an − q| < ε. �

Problem 10. Let (an) be a sequence of complex numbers and let p ∈ C. Show
that if (an) converges to p, then (an) clusters at p, and p is the only cluster point.

Solution. Suppose that (an) converges to p. Then every neighborhood of p contains
an for all but finitely many n. Thus there are infinitely many n such that an is in
the neighborhood. By Problem 9 (d), (an) clusters at p.

To see that p is the only cluster point, let q ∈ X, q 6= p; we show that (an) does

not cluster at q. Let ε = |p−q|
2 and let U = Bε(p) and V = Bε(q). Then U and V

are disjoint neighborhoods of p and q respectively.
Let A be a tail of (an) such that A ⊂ U . Since U ∩ V = ∅, we have A∩ V = ∅,

so V is a neighborhood of q which does not intersect A. Thus (an) does not cluster
at q, by 9 (c). �

Problem 11. Find an example of a sequence (an) of real numbers and a real
number q ∈ C such that (an) clusters at q but does not converge to q.



6

Problem 12. Let (an) be an injective sequence and let q ∈ C. Show that (an)
clusters at q if and only if every neighborhood of q contains a for infinitely many
a ∈ {an}.

Problem 13. Find an example of a noninjective sequence (an) of real numbers,
a real number q, and a neighborhood U of q, such that (an) clusters at q but U
contains only finitely many points from {an}.

Problem 14. Let (an) be a bounded sequence of real numbers, and set

C = {q ∈ C | q is a cluster point of (an)}.
Show that C is closed and bounded.

Solution. First we show that C is closed. Let w ∈ Cc. Then w is not a cluster
point of (an), so there exists an open neighborhood U of w which does not intersect
{an}. If u ∈ U , then U is an open neighborhood of u which does not intersection
{an}, so u is not a cluster point of (an), so u ∈ Cc. Thus U ⊂ Cc, which shows
that Cc is open, since every point in Cc is an interior point. Thus C is closed.

Next we show that C is bounded. Since (an) is bounded, there exists M > 0
such that |an| < M for all n ∈ N. Suppose that q ∈ C such that |q| > M . Let
ε = |q| −M . For x ∈ Bε(q), |x| > M , so x /∈ {an}, so x is not a cluster point of
(an). This shows that if q ∈ C, then |q| ≤M , so C is bounded. �

5. Bounded and Monotone Sequences

Definition 14. A sequence (an) of complex numbers is bounded if there exists a
R > 0 such that |an| < R for all n ∈ N.

Problem 15. Let (an) be a convergent sequence of complex numbers. Then (an)
is bounded.

Definition 15. A sequence (an) of real numbers is increasing if an+1 > an for all
n ∈ N, and it is decreasing if an+1 < an for all n ∈ N. It is monotone if it is either
increasing of decreasing.

Proposition 4. (Bounded Monotone Convergence Rule)
A bounded monotone sequence of real numbers converges.

Reason. This may be proven using the Dedekind completeness axiom of the real
numbers, which says that every set of real numbers which is bounded above has a
least upper bound. �

Problem 16. (Squeeze Law)
Let (an), (bn), and (cn) be sequences in R. Suppose that an ≤ cn ≤ bn for all
n ∈ N. Show that if (an) and (bn) both converge to L ∈ R, then (cn) also converges
to L.
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6. Arithmetic of Sequences

Problem 17. Let (an) and (bn) be sequences in C. Suppose that lim an = L and
lim bn = M for some L,M ∈ C. Apply the definition to show that the sequence
(an + bn) converges to L+M .

Solution. Let ε > 0.
Let N1 be so large that n ≥ N1 implies |an − L| < ε/2.
Let N2 be so large that n ≥ N2 implies |bn −M | < ε/2.
Let N = max{N1, N2}.
Then, for n ≥ N , we have

|(an + bn)− (L+M)| = |(an − L) + (bn −M)|
≤ |an − L|+ |bn −M |

<
ε

2
+
ε

2
= ε.

�

Problem 18. Let (an) be a sequences in C and let c ∈ C. Suppose that lim an = L
for some L ∈ C. Apply the definition to show that the sequence (can) converges to
cL.

Problem 19. Let (an) and (bn) be sequences in C. Suppose that lim an = L and
lim bn = M for some L,M ∈ C. Apply the definition to show that the sequence
(an · bn) converges to LM .

Solution. Let ε > 0.
Since (bn) converges, it is bounded; let B > 0 be so large that |bn| < B for all

n ∈ N.
Let N1 be so large that n ≥ N1 implies |an − L| <

ε

2B
.

Let N2 be so large that n ≥ N2 implies |bn −M | <
ε

2|L|
.

Let N = max{N1, N2}.
Then, for n ≥ N , we have

|anbn − LM | = |anbn − Lbn + Lbn − LM |
≤ |anbn − Lbn|+ |Lbn − LM |
= |an − L||bn|+ |L||bn −M |

<
ε

2B
·B + |L| ε

2|L|
= ε.

�
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7. Cauchy sequences

Definition 16. Let (an) be a sequence of complex numbers. We say that (an) is
a Cauchy sequence if

∀ε > 0∃N ∈ N 3 m,n ≥ N ⇒ |am − an| < ε.

Proposition 5. Let (an) be a sequence of complex numbers. If (an) converges,
then (an) is a Cauchy sequence.

Proof. Let lim an = L.
Let ε > 0, and let N be so large that n ≥ N implies that |an − L| < ε.
Then, for m,n ≥ N , we have

|am−an| = |am−L+L−an| ≤ |am−L|+|L−an| = |am−L|+|an−L| <
ε

2
+
ε

2
= ε.

�

Definition 17. A subset of X ⊂ C is called complete if every Cauchy sequence in
X converges to a point in X.

Theorem 2. The set C is complete.

Proof. This follows from the fact that R is complete, which requires a formal defi-
nition of the real numbers. �

8. Subsequences

Definition 18. Let a : N→ R be a sequence in a set X. A subsequence of (an) is
a sequence b : N → X which can be expressed as a composition b = a ◦ n, where
n : N→ N is an increasing sequence of natural numbers. For each natural number
k, we write nk instead of n(k); thus b(k) = a(n(k)) = a(nk) = ank

. Thus we may
write (ank

) is indicate a subsequence of (an).

Definition 19. Let (an) be a sequence of real numbers. A subsequential limit of
(an) is a real number q ∈ C such that there exists a convergent subsequence (ank

)
whose limit is q.

Problem 20. Let (an) be a sequence of real numbers and let q ∈ C. Show that q
is a cluster point of (an) if and only if q is a subsequential limit of (an).

Problem 21 (Bolzano-Weierstrauss Theorem). Show that every bounded sequence
of complex numbers has a convergent subsequence.
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